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ABSTRACT

A theory of interval iteration, based on a few simple assumptions, is

given for the fixed point problem for operators in partially ordered

topological spaces. A comparison of interval with ordinary iteration is made

which shows that their properties are converse in a certain sense with respect

to existence or nonexistence of fixed points. The theory of interval

iteration is shown to hold without modification if the computation is

restricted to a finite set of points, as in actual practice. In this latter

case, interval iteration is shown to converge or diverge in a finite number of

steps, for which an upper bound is given. By the introduction of a suitable

iteration operator, the method of interval iteration is extended to the

problem of solution of equations in linear spaces.
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SIGNIFICANCE AND EXPLANATION

Interval iteration is a powerful computational method with applications

to the solution of linear and nonlinear systems of equations, integral

equations (see MRC TSR #2128), and differential equaitons. Because of this

diversity, it is helpful to have a general theory to act as a guide to

specific applications. This report gives such a general theory, based on only

a few simple assumptions to give it as wide a scope as possible. The notions

of convergence and divergence of interval iteration are defined and their

implications with regard to existence or nonexistence of solutions are

presented. It turn3 out that convergence of interval iteration is assured if

the initial interval contains a solution, and the iteration in this case can

provide improved lower and upper bounds for the solution. Divergence of

interval iteration, on the other hand, shows that the initial interval did not

contain a solution, and thus may be discarded. These properties are compared

with the well-known results for ordinary iteration, and shown to be converse

in a certain sense. Remarks on how to use interval iteration in applications

are made, and the tieory is also shown to hold if the computation is

restricted to a finite set of elements, as on an ordinary computer.

Construction of interval extensions which are exactly representable in the

finite case is explained, and it is observed that interval iteration will

converge or diverge in a finite number of steps in actual computation, and an

upper bound is obtained for this number which depends only on the initial

interval chosen. Now that microprogrammed interval operations can be

performed with speeds comoarable to floating point arithmetic, interval

iteration can be applied to a wider class of problems to obtain solutions of

known reliability.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



A THEORY OF INTERVAL ITERATION

L. B. Rall

1. A fixed point problem. Suppose that 0 is an operator which maps a partially

ordered topological space S into itself. A fixed point y* E S of * satisfies the

equation

(1.1) y = (y);

solving this equation is called the fixed point problem for 0 in S.

The partial ordering relation in S will be denoted, as usual, by "S". Elements

Y, y of S such that y y define an interval Y = Ey, y] in S, which is the nonempty

set

(1.2) Y = Z, y] = (Y I Y 5 Y !5 y, y E s}.

The elements y, y are called respectively the lower and upper endpoints of Y. The

set of all intervals in S is denoted by IS. The elements y of S are identified with

the corresponding dege.erate intervals y = y, y] which have equal endpoints.

The following assiumptions will be made concerning the topology of S:

(i) Intervals are closed subsets of S;

(ii) Each nondegenerate interval contains a limit point of countable order.

The last assumption means that if Y is nondegenerate, then it contains a limit

point k such that each neighborhood of Z contains at least a countable number of

points of Y different from Z. This technical property is called N 0-compactness by

Sierpiski [101.

2. Interval extensions and interval iteration. An operator which maps the set IS4

of intervals in S into itself is called an interval operator in S. An interval oper-

ator t is said to be an interval extension of an operator 0 in S if (i) it is an & ' -,

extension in the sense thatN

(2.1) {(y) Iy C Y}) C y Y C ISN
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and (11) 0 ts inclusion monotone, that is,

(2.2) YCZ - 0(Y) C O(Z), Y,Z E IS.

0 is called an interval extension of an interval operator P if F(Y) C 0(Y) for

Y E IS and (2.2) holds.

Definition 2.1. Given an initial interval Y0 and an interval operator 0, the

sequence {Y n defined by

(2.3)Y - Y 0(OY ), n - 0,1,2,...,

(2.3) ¥n+l " Yn n

is said to be generated by interval iteration starting from Y0 *

Note that, from (2.3),

(2.4) Y0 D Y1 D Y2 D.

hence, interval iteration generates a nested (or descending) sequence of closed sets.

Definition 2.2. The interval iteration process (2.3) is said to diverge if

(2.5) YN 0 (empty)

for some positive integer N; otherwise,

(2.6) Y* ny
non-0

is nonempty by the Cantor theorem ([i0], pp. 34-35), and the interval iteration is
said lima

said to converge to the limit Y* - ni [Y ) given by (2.6).
n-'- n

Thus, according to this definition, convergence and divergence of interval

iteration have a converse relationship, as one would expect.

Theorem 2.1. If 0 is an interval extension of the operator 0 in S, and the

initial interval Y0 contains a fixed point y* of *, then the interval iteration (2.3)

converges; furthermore,

(2.7) y 6 * - . {Yn 
)  

Y
n n-0 n

Proof. This follows, as is well known 13], 16), from (2.3) and mathematical

induction, since y* E Yk (y*) Y* e O(Yk), and thus y* E Y k+l - Ykfl(Yk) 0. QED
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The contrapositive of Theorem 2.1 is the following result, which is more in-

cisive.

Theorem 2.2. If 0 is an interval extension of 0, and the interval iteration

(2.3) diverges, then the initial interval Y0 contains no fixed points y* c ' .

This assertion was noted by Nickel [8) in connection with an interval version

of Newton's method.

Observe that convergence of interval iteration is a necessary, not sufficient,

condition for the existence of a fixed point y* E Y0 of 0; divergence, on the other

hand, is a sufficient condition for nonexistence of fixed points of 0 in Y0 "

3. Comparison with ordinary iteration. The ordinary iteration method

(3.1) Yn+1 = (y), n = 0,1,2,...,

is often used to attempt to generate a sequence {y n which converges to a fixed point

y* of *, startixig from some initial point y0 " If 0 is continuous in the topology for

S, in which alson1m fy y* E S, then y* will be a fixed point of 0, and if Y is

a closed subset of S such that {y n} C Y0 , then y* E Y 0 On the other hand, if Y0 is

a subset of S which does not contain a fixed point of the continuous operator *,

thch the sequence generated by the iteration (3.1) cannot converge to a point of Y0,

The first alternative will be called convergence into Y0 , and the second divergence

fr Y 0 . On the basis of these definitions and the corresponding concepts for incer-

val iteration given in Definition 2.2, a comparison of ordinary and interval iteration

is shown in Figure 3.1.

Ordinary Iteration yn+l = (y n "  Interval Iteration Yn+l = y n 4Y nn n

Convergence (into Y0 ) - Existence (y* 6 y0) -

Existence (y* E Y Convergence (Y = n Yn P 0)n=0

Nonexistence (y* C Y) Divergence rsome YN= 0) -

Divergence (from Y0 ) Nonexistence (y* C Y0)

Figure 3.1. Ordinary and ,nterval Tteration Compared.
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Thus, interval iteration stands in a converse relationship to ordinary itera-

tion under the above assumptions. It is worth noting that in metric spaces S, the

convergence of the ordinary iteration process (3.1) often depends on being able to

choose the initial point y. "close" to the fixed point y*, and that some operators

have fixed points y* which repel the iteration sequence (y n for all y0 jO y*. The

convergence of interval iteration, on the other hand, follows if the initial interval

Y is "large enough" to contain a fixed point y* of *.

0

4. Applications of interval iteration. Interval iteration may be applied in sev-

eral ways to the fixed point problem (1.1).

10. Suppose that the interval Y0 is known to contain a fixed point y* of *,
perhaps on the basis cf a nonconstructive fixed point theorem. In this case, the

interval iteration (2.3) will converge, and may be used to obtain lower and upper

bounds for y*, namely,

(4.1) Xn 5 y* ! Yn' n -0,1,2,...,

where Yn - En Yn, and in the limit,

(4.2) X! :S y* !5'*

where Y* - [y ,y'] is the limit (2.6) of {Y n.

The bounds (4.1) give improved results as long as the inclusions (2.4) are

strict. However, if Y N+l YN for some positive integer N, then

(4.3) ye n Y N
n-0

this is called finite convergence of the interval iteration (2.3). If finite con-

vergence takes place, then the best lower and upper bounds obtainable for y*, start-

ing from Y0 ' (Y y 0 ), are

(4.4) . 5 y

26. If it is not known whether or not Y contains a fixed point y* of *, in-

terval iteration may still be useful in one of the following ways.
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i) As long as the interval iteration is producing intervals which de-

crease at each step (strict inclusion holds in (2.4)), then an existence test that

fails because Yo' Y ".... Y-. are "too large" may succeed for YN" This Y may then

be taken as the initial interval Y0 , and one has the favorable case 1* discussed above.

(ii) If the iteration produces an empty intersection (divergence), then

this establishes conclusively that the initial interval Y does not contain a fixed
0

point y* of p, so than this interval may be excluded from further consideration.

There is, of course, a third possibility:

(iii) The interval iteration (2.3) leads only to an interval yo in

which no conclusive assertion about existence or nonexistence of a fixed point y*

of * is available. (Y* may be the limit Y* if obtained in a finite number of steps,

or otherwise.)

Possible alternatives in this situation include partition of the resulting in-

terval YO into subintervals for further examination, a strategy developed by Moore

and Jones (71, or acceptance of y* as a "generalized" or "pseudosolution" (relative

to the initial interval Y0 ) of the fixed point problem. This latter choice may Le

useful in the development of an interval version of regularization of solutions of

ill-posed problems.

5. Interval iteration on a grid. The ordinary iteration process (3.1) is a poor

model of what actually occurs in computation, since it is usually impossible to car-

ry out the indicated transformations exactly. Interval iteration, on the other hand,

is readily adaptable to actual machine computation, and its theory can be preserved

intact.

Suppose that G (called a grid) is a finite subset of the space S. Here, one

may think of the set of numbers which have exact representations on a given computer,

and finite Cartesian products of such a set. The subset of IS consisting of intervals

with endpoints in G will be denoted by IG, that is,

(5.1) IG = {[a ,b] I a,b G GI.

The union of all intervals in IG, considered as subsets of S, defines a closed

-5-



subset D of S. since IG is a finite collection of closed sets (101. The operation

of directed rounding will now be defined in ID, the set of all intervals in S having

endpoints in D.

Definition 5.1. For x E D, the upwad rounding operator V to G is defined by

(5.2) Vx- min {b I b Z x, b6 G),

and the downward rounding operator A to G by

(5.3) Ax - max (a I a 5 x, a E G}

For X - Ix x E ID, the directed rounding operator Q to IG is defined by

(5.4) [3x=Ox,0xl = &x,Vxj, x- (-, ) EID.

It follows immediately from this definition that 0 is an inclusion monotone in-

terval operator. Furthermore, if * maps D into itself and 0 is an interval extension

of *, then ]0 will be an interval extension of 0 which maps IG into IG. Thus, for

actual computation, it may be assumed that the interval extension 0 of 0 in (2.3) has

been constructed to map IG into itself. This means that the transformed intervals

*(Y n will be exactly representable in terms of elenents of G for Yn C IG. The theory

of interval iteration given above applies to operators of this type without modifica-

tion. Furthermore, wider the following reasonable assumption, the entire interval

iteration (2.3) may be carried out exactly, using only elements of the grid G.

Assumption 5.1 (Intersection Property). If X,Z E IG, then XnZ - 0, the empty

set, or XnZ E IG.

Thus, if IG has the intersection property, and the interval extension 4 of 4

has been constructed to map IG into itself, then the selection of an initial inter-

val Y0 E IG will assure that the intervals YI, Y2 ' ... generated by the interval it-

eration (2.3) also belong to IG. Furthermore, this interval iteration on IG will

always converge or diverge in a finite number of steps. To see this, let G#X -

G#[x j denote the number of grid points (elements of G) contained in the interval

X E IG. Then, the following result holds.
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Theorem 5.1. On IG, the interval iteration (2.3) will converge or diverge in

at most G#(Y ) steps.
0

Proof. If the interval iteration (2.3) has not terminated in n steps by divergence

or convergence, then it will have generated distinct intervals Y0, Y' "''' Yn E IG,

including the initial interval Y0 ' Since (2.4) holds, one has

(5.5) G#(Y n ) G#(Y n_) - 1 G# (Y n 2 ) -2 S ... S G#(Y 0 ) - n.

Thus, the maximum length of a sequence of distinct nested intervals in IG is v =

G#(Y ) - 1, since each interval in IG must contain at least one point of G. If the

interval iteration has not terminated by the vth step, then

(5.6) G#(Y ) = 1

by (5.5), which implies that Y is a degenerate interval. Now, one has either Y C9V

*(Y ), in which case YV+1 - YV (.convergence in v steps), or Y 0nCY ) = 0 (divergence

in v + 1 - G#(Y0) steps). QED

Thus, in actual computation, convergence or divergence of an interval iteration

is an observable event in principle, since one works on a grid of machine numbers.

Of course, G#(Y 0), although finite, could be prohikitively large; however, termination

of interval iteration is usually observed in far fewer steps. The construction cf

the interval operator is crucial to the success of interval iteration [31, but de-

pends heavily on the nature of S, *, and the grid G available.

6. Sojution of equations. In many applications, S is a linear space, and the problem

of interest is to find a solution x* of the equation

(6.l) f(x) = 0.

This may be transformed into a fixed point problem (1.1) in many ways by the intro-

duction of suitable iteration operators *. For example, one may take

(6.21 *(x) = x - Yf(x)

to define 0, where Y is an invertible linear operator in S. Given an interval ex-

tension F of f, the corresponding interval extension 0 of 0 is
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(6.3) OX) X - YF(X),

using interval arithmetic (4], [6]. If S is a Banach space, and f has a Fr4chet

derivative f', then

(6.4) '(x) = I - Yf'(x),

where I denotes the identity operator, and a more accurate interval extension of

can be constructed on the basis of its mean-value form [1]. Let F1 be an interval

extension of f', then the corresponding interval extension 4' of 0' is given by

(6.5) 0'(X) I I - YF'(X),

and the mean-value form of (6.2) is, for y E X,

(6.6) (X) = y - Yf(y) + {I - YF'(X)1(X - y),

and this interval extension 4 of 0 is called the Krawczyk iteration operator. It

arose from consideration of an interval version of Newton's method [2], and has many

useful properties [3], (5], (9]. In actual practice, computation would be done with

a rounded version of (6.6). Suppose that F, F' are interval extensions in IG of f,

f', then

(6.7) O(X) = M(y - YF(y) + (I - YF'(X)}(X - y)}

will have values in I3 for y E G, X E IG. An even more rounded interval extensicn

of (6.6) to IG is

(6.8) O(X) = 0(0{y - [YF(y)} + I]f{I - []YF' (X) }-D(X - y)J},

which models a realistic comFutational interval operator.
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